3.2649 \(\int \frac{\sqrt{1-2 x} \sqrt{3+5 x}}{(2+3 x)^{3/2}} \, dx\)

Optimal. Leaf size=98 \[ -\frac{2}{3} \sqrt{\frac{11}{3}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )-\frac{2 \sqrt{1-2 x} \sqrt{5 x+3}}{3 \sqrt{3 x+2}}+\frac{4}{3} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

(-2*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(3*Sqrt[2 + 3*x]) + (4*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]],
35/33])/3 - (2*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/3

________________________________________________________________________________________

Rubi [A]  time = 0.0297386, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {97, 158, 113, 119} \[ -\frac{2 \sqrt{1-2 x} \sqrt{5 x+3}}{3 \sqrt{3 x+2}}-\frac{2}{3} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )+\frac{4}{3} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(2 + 3*x)^(3/2),x]

[Out]

(-2*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(3*Sqrt[2 + 3*x]) + (4*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]],
35/33])/3 - (2*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/3

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{\sqrt{1-2 x} \sqrt{3+5 x}}{(2+3 x)^{3/2}} \, dx &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{3 \sqrt{2+3 x}}+\frac{2}{3} \int \frac{-\frac{1}{2}-10 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{3 \sqrt{2+3 x}}-\frac{4}{3} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx+\frac{11}{3} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{3 \sqrt{2+3 x}}+\frac{4}{3} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{2}{3} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.181366, size = 92, normalized size = 0.94 \[ \frac{1}{9} \left (37 \sqrt{2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )-\frac{6 \sqrt{1-2 x} \sqrt{5 x+3}}{\sqrt{3 x+2}}-4 \sqrt{2} E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(2 + 3*x)^(3/2),x]

[Out]

((-6*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/Sqrt[2 + 3*x] - 4*Sqrt[2]*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2]
 + 37*Sqrt[2]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/9

________________________________________________________________________________________

Maple [C]  time = 0.031, size = 135, normalized size = 1.4 \begin{align*} -{\frac{1}{270\,{x}^{3}+207\,{x}^{2}-63\,x-54}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( 37\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -4\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +60\,{x}^{2}+6\,x-18 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x)

[Out]

-1/9*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(37*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF
(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-4*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66+
110*x)^(1/2),1/2*I*66^(1/2))+60*x^2+6*x-18)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(5*x + 3)*sqrt(-2*x + 1)/(3*x + 2)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{9 \, x^{2} + 12 \, x + 4}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(9*x^2 + 12*x + 4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{1 - 2 x} \sqrt{5 x + 3}}{\left (3 x + 2\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(1/2)*(3+5*x)**(1/2)/(2+3*x)**(3/2),x)

[Out]

Integral(sqrt(1 - 2*x)*sqrt(5*x + 3)/(3*x + 2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(5*x + 3)*sqrt(-2*x + 1)/(3*x + 2)^(3/2), x)